方程

引言

求解$n$次方程的本質,為將其降為一個$n - 1$次方程。這裡利用初等代數方法,討論三四次方程的可解性。

四次方程

以四次方程為例,考慮牛頓恆等式
$$
\begin{aligned}
e_1 =& p_1\nonumber\\
2e_2 =& p_1^2 - p_2\nonumber\\
3e_3 =& \frac{1}{2}p_1^3 - \frac{3}{2}p_1p_2 + p_3\nonumber\\
4e_4 =& \frac{1}{6}p_1^4 - p_1^2p_2 + \frac{4}{3}p_1p_3 + \frac{1}{2}p_2^2 - p_4
\end{aligned}
$$
等式左邊對應韋達定理。利用一個線性變換消去次高項,可以使問題簡化。令$p_1 = 0$
$$
\begin{aligned}
e_1 =& 0\nonumber\\
2e_2 =& - p_2\nonumber\\
3e_3 =& p_3\nonumber\\
4e_4 =& \frac{1}{2}p_2^2 - p_4
\end{aligned}
$$
相應可令$x_4 = -(x_1+x_2+x_3)$,用$p_n’$表示不含$x_4$的對稱多項式
$$
\begin{aligned}
-2e_2 =& p_1’^2 + p_2’\nonumber\\
3e_3 =& -p_1’^3 + p_3’\nonumber\\
8e_4 =& -p_1’^4 + 2p_1’^2p_2’ + p_2’^2 - 2p_4’
\end{aligned}
$$
考慮不含$x_4$的簡單線性變換$x_n = p’’_1 - 2y_n$,其中$p’’_n$表示新變量$y$的對稱多項式
$$
\begin{aligned}
p_1’ =& p_1’’\nonumber\\
p_2’ =& -p_1’’^2 + 4p_2’’\nonumber\\
p_3’ =& -3p_1’’^3 + 12p_1’’p_2’’ - 8p_3’’\nonumber\\
p_4’ =& -5p_1’’^4 + 24p_1’’^2p_2’’ - 32p_1’’p_3’’ + 16p_4’’
\end{aligned}
$$
用$p’’_n$替換$p_n’$
$$
\begin{aligned}
e_2 =& -2p_2’’ \nonumber\\
e_3 =& -8e_3’’\nonumber\\
e_4 =& -p_2’’^2 + 2p_4’’
\end{aligned}
$$
令$z_n = y_n^2$,用$e_n’’’$表示其對稱多項式
$$
\begin{aligned}
e_1’’’ =& p_2’’ = -\frac{1}{2}e_2 \nonumber\\
e_2’’’ =& \frac{1}{2}p_2’’^2 - \frac{1}{2}p_4’’ = \frac{1}{16}e_2^2 - \frac{1}{4}e_4\nonumber\\
e_3’’’ =& e_3’’^2 = \frac{1}{64}e_3
\end{aligned}
$$
這樣就將原四次方程轉化為三次方程,解出$z_n$通過$z_n = y_n^2$及$x_n = \sum y_n - 2y_n$可以得到$x_n$。

此變換對應歐拉解法。

三次方程

類似,令$p_1 = 0$,三次方程牛頓恆等式簡化為
$$
\begin{aligned}
e_1 =& 0\nonumber\\
2e_2 =& - p_2\nonumber\\
3e_3 =& p_3
\end{aligned}
$$
同樣令$x_3 = -(x_1+x_2)$,用$p_n’$表示不含$x_3$的對稱多項式
$$
\begin{aligned}
-2e_2 =& p_1’^2 + p_2’\nonumber\\
3e_3 =& -p_1’^3 + p_3’
\end{aligned}
$$
考慮不含$x_3$的簡單線性變換$x_n = e^{i\frac{2\pi}{3}}p’’_1 - \sqrt{3}i*y_n = Jp_1’’ + Ky_n$,其中$p’’_n$表示新變量$y$的對稱多項式
$$
\begin{aligned}
p_1’ =& -p_1’’\nonumber\\
p_2’ =& 2p_1’’^2 - 3p_2’’\nonumber\\
p_3’ =& -p_1’’^2 + 3p_3’’
\end{aligned}
$$
用$p’’_n$替換$p_n’$
$$
\begin{aligned}
-\frac{1}{3}e_2 =& \frac{1}{2}p_1’’^2 - \frac{1}{2}p_2’’ \nonumber\\
e_3 =& p_3’’
\end{aligned}
$$
最後令$z_n = y_n^3$,用$e_n’’’$表示其對稱多項式
$$
\begin{aligned}
e_1’’’ =& p_3’’ = e_3 \nonumber\\
e_2’’’ =& (\frac{1}{2}p_1’’^2-\frac{1}{2}p_2’’)^3 = -\frac{1}{27}e_2^3
\end{aligned}
$$
這樣就將原三次方程轉化為二次方程,解出$z_n$通過$z_n = y_n^3$及$x_n = J\sum y_n + Ky_n$可以得到$x_n$。

實質上等同卡當公式。